Olfactory response termination involves Ca2+-ATPase in vertebrate olfactory receptor neuron cilia

نویسندگان

  • Salome Antolin
  • Johannes Reisert
  • Hugh R. Matthews
چکیده

In vertebrate olfactory receptor neurons (ORNs), odorant-induced activation of the transduction cascade culminates in production of cyclic AMP, which opens cyclic nucleotide-gated channels in the ciliary membrane enabling Ca(2+) influx. The ensuing elevation of the intraciliary Ca(2+) concentration opens Ca(2+)-activated Cl(-) channels, which mediate an excitatory Cl(-) efflux from the cilia. In order for the response to terminate, the Cl(-) channel must close, which requires that the intraciliary Ca(2+) concentration return to basal levels. Hitherto, the extrusion of Ca(2+) from the cilia has been thought to depend principally on a Na(+)-Ca(2+) exchanger. In this study, we show using simultaneous suction pipette recording and Ca(2+)-sensitive dye fluorescence measurements that in fire salamander ORNs, withdrawal of external Na(+) from the solution bathing the cilia, which incapacitates Na(+)-Ca(2+)exchange, has only a modest effect on the recovery of the electrical response and the accompanying decay of intraciliary Ca(2+) concentration. In contrast, exposure of the cilia to vanadate or carboxyeosin, a manipulation designed to block Ca(2+)-ATPase, has a substantial effect on response recovery kinetics. Therefore, we conclude that Ca(2+)-ATPase contributes to Ca(2+) extrusion in ORNs, and that Na(+)-Ca(2+)exchange makes only a modest contribution to Ca(2+) homeostasis in this species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Olfactory response termination involves Ca-ATPase in vertebrate olfactory receptor neuron cilia

Olfactory transduction takes place in the cilia of olfactory receptor neurons (ORNs) (for review see Kleene, 2008). The process begins with the activation of an odorant receptor in the ciliary membrane, followed by synthesis of cAMP through activation of adenylyl cyclase (Lowe et al., 1989) via a G protein–coupled cascade. The ensuing increase in cAMP concentration causes CNG channels to open (...

متن کامل

The electrochemical basis of odor transduction in vertebrate olfactory cilia.

Most vertebrate olfactory receptor neurons share a common G-protein-coupled pathway for transducing the binding of odorant into depolarization. The depolarization involves 2 currents: an influx of cations (including Ca2+) through cyclic nucleotide-gated channels and a secondary efflux of Cl- through Ca2+-gated Cl- channels. The relation between stimulus strength and receptor current shows posit...

متن کامل

Imaging odor-induced calcium transients in single olfactory cilia: specificity of activation and role in transduction.

The possibility that odor stimuli trigger distinct Ca2+ elevations within the cilia of vertebrate olfactory receptor neurons (ORNs) is a widely proposed concept. However, because of the small size of the olfactory cilia, the existence and properties of such Ca2+ elevations and their role in odor transduction are still unknown. We investigate odor-induced Ca2+ changes in individual olfactory cil...

متن کامل

A Selective PMCA Inhibitor Does Not Prolong the Electroolfactogram in Mouse

BACKGROUND Within the cilia of vertebrate olfactory receptor neurons, Ca(2+) accumulates during odor transduction. Termination of the odor response requires removal of this Ca(2+), and prior evidence suggests that both Na(+)/Ca(2+) exchange and plasma membrane Ca(2+)-ATPase (PMCA) contribute to this removal. PRINCIPAL FINDINGS In intact mouse olfactory epithelium, we measured the time course ...

متن کامل

Phosphorylation and Inhibition of Olfactory Adenylyl Cyclase by CaM Kinase II in Neurons a Mechanism for Attenuation of Olfactory Signals

Acute desensitization of olfactory signaling is a critical property of the olfactory system that allows animals to detect and respond to odorants. Correspondingly, an important feature of odorant-stimulated cAMP increases is their transient nature, a phenomenon that may be attributable to the unique regulatory properties of the olfactory adenylyl cyclase (AC3). AC3 is stimulated by receptor act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2010